Contoh Soal Limit Trigonometri Beserta Pembahasan

Contoh Soal Limit Trigonometri Beserta Pembahasan

contoh soal limit trigonometri tak hingga beserta jawabannya​

Daftar Isi

1. contoh soal limit trigonometri tak hingga beserta jawabannya​


Jawaban:

ini jawabannya ya maaf kalau salah


2. limit fungsi trigonometri, tolong bantu beserta pembahasannya


jawaban lihat gambar aja ya...

3. merangkum nilai limit fungsi trigonometri beserta contoh soal​


Jawaban:.

Penjelasan:


4. Soal limit trigonometri


Jawab:

Penjelasan dengan langkah-langkah:


5. [Matematika Peminatan Kelas 12]soal limit trigonometri#SERTAKAN CARANYA


#F

lim(x->1) {(2x sin (x - 1/x) cos (x - 1/x)}/ (x² -1) = 2


6. Contoh soal dan pembahasan limit fungsi aljabar


a.lim 4
x >3

b.lim 3x
x >3
c.lim 3x/2
x->2
sorry cmn soalnya aja

7. contoh soal trigonometri kelas 10 dan pembahasannya dong**


Nyatakan sudut-sudut berikut dalam satuan derajad:
a) 1/2 π rad
b) 3/4 π rad
c) 5/6 π rad


Pembahasan
Konversi:
1 π radian = 180°

Jadi:
a) 1/2 π rad


b) 3/4 π rad


c) 5/6 π rad





8. Poin Gede !!! Tolong Yang Jago MatematikaBuatlah Contoh Soal Matematika Bebas Tentang : Limit Fungsi Trigonometri Beserta Penjelasan dan Pembahasannya.Mohon Bantuannya ya ^_^


Kelas : XI
Pelajaran : Matematika
Kategori : Limit Fungsi Trigonometri

Pembahasan terlampir

9. minta contoh soal sama pembahasan tentang persamaan trigonometri dong????????


1. Jika Sin xo = Sin α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (180– α) + k. 360 k ∈ Bilangan Bulat
2. Jika Cos xo = Cos α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (– α) + k. 360 k ∈ Bilangan Bulat
3. Jika tan xo = tan α o (x ∈ R) Maka : x1.2 = α + k. 180 k ∈ Bilangan Bulat


10. tolong kasih contoh soal pembuktian identitas trigonometri beserta pembahasan yaa.. makasi


[tex]\bigstar \underline {\text{Captain Here}} \bigstar \\ \\ \text{Buktikan bahwa }\hspace{0,2cm}tanx . sinx+cosx=secx\hspace{0,1cm} \\ \\ Bukti: \\ \\ tenxsinx+cosx= \frac{sinx}{cosx} . sinx+cosx \\ .\hspace{2,44cm} = \frac{sin^2x+cos^2x}{cosx} \\ .\hspace{2,44cm} = \frac{1}{cosx} \\ .\hspace{2,44cm} = secx \\ \\ \bold{Terbukti}[/tex]

11. Soal Limit trigonometri....


Jawab

34.
soal
= lim x→π/4 (cos² x - sin² x) . cos x / (cos x - sin x)

= lim x→π/4 cos x (cos x + sin x)(cos x - sin x) / (cos x - sin x)

= lim x→π/4 cos² x + cos x sin x

= (1/2 √2)² + 1/2 √2 . 1/2 √2

= 2/4 + 2/4

= 1


25.
soal
= lim x→π/2 sin² (π/2 - x) / 2(x - π/2) sin (x - π/2)

= lim x→π/2 (- sin (x - π/2))² / 2(x - π/2) sin (x - π/2)

= lim x→π/2 sin (x - π/2) / 2(x - π/2)

= 1/2


12. ***contoh soal trigonometri kelas 10 dan pembahasannya dong


dalam bentuk lain 3sin^2 x - 2cos^2 x =.....
jawab :
sin^2x + cos^2x=1 =>cos^2x= 1-sin^2x
sehingga:
3sin^2x-2cos^2x
= 3sin^2x-2(1-sin^2x)
=3sin^2x-2+2sin^2x
=5sin^2x-2

13. soal tentang limit trigonometri..


Nilai dari [tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{1 - cos \: x}{sin \: 3x \: tan \: 2x}}}[/tex] adalah [tex]\boxed{\sf{\dfrac{1}{12}}}.[/tex]

PEMBAHASAN

Limit fungsi merupakan keadaan dari suatu fungsi saat mendekati suatu titik. Misalnya fungsi f(x) tidak terdefinisi saat x = a namun bernilai L saat mendekati a. Secara matematis dapat dituliskan menjadi:

[tex]\boxed{\boxed{\sf{\lim_{x \to a}f(x) = L}}}[/tex]

Teorema Limit

Berikut beberapa teorema limit utama.

→ [tex]\displaystyle{\sf{\lim_{x \to a}k = k}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to a} {k. \: x}^{n} = k. \: {a}^{n}}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to a}k. \: f(x) = k. \: \lim_{x \to a} \: f(x)}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to a}f(x) \pm g(x) = \lim_{x \to a}f(x) \pm\lim_{x \to a}g(x)}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to a}f(x) \times g(x) = \lim_{x \to a}f(x) \times \lim_{x \to a}g(x)}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to a} \dfrac{f(x)}{g(x)} = \dfrac{\displaystyle{\sf{\lim_{x \to a}f(x)}}}{\displaystyle{\sf{\lim_{x \to a}g(x)}}}}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to a}{\left[f(x)\right]}^{n} = {\left[\lim_{x \to a}f(x)\right]}^{n}}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to a}\sf{\sqrt[\sf{n}]{\sf{f(x)}}} = \sqrt[\sf{n}]{\displaystyle{\sf{\lim_{x \to a}f(x)}}}}}[/tex]

Berikut beberapa teorema limit trigonometri.

→ [tex]\displaystyle{\sf{\lim_{x \to a}sin \: x = sin \: a}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to a}cos \: x = cos \: a}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to a}tan \: x = tan \: a}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to a}csc \: x = csc \: a}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to a}sec\: x = sec \: a}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to a}cot \: x = cot \: a}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{sin \: x}{x} = 1}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{x}{sin \: x} = 1}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{tan \: x}{x} = 1}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{x}{tan \: x} = 1}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{sin \: ax}{bx} = \dfrac{a}{b}}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{ax}{sin \: bx} = \dfrac{a}{b}}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{tan \: ax}{bx} = \dfrac{a}{b}}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{ax}{tan \: bx} = \dfrac{a}{b}}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{sin \: ax}{sin \: bx} = \dfrac{a}{b}}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{tan \: ax}{tan \: bx} = \dfrac{a}{b}}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{sin \: ax}{tan \: bx} = \dfrac{a}{b}}}[/tex]

→ [tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{tan \: ax}{sin \: bx} = \dfrac{a}{b}}}[/tex]

Ingat:

[tex]\boxed{\boxed{\sf{cos \: ax} = \left\{\begin{array}{c} \sf{{cos}^{2}\dfrac{a}{2}x - {sin}^{2} \dfrac{a}{2}x}\\ \\ \sf{2 \: {cos}^{2}\dfrac{a}{2}x - 1} \\ \\\sf{1 - 2 \: {sin}^{2}\dfrac{a}{2}x}\end{array}\right.}}[/tex]

Diketahui:

[tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{1 - cos \: x}{sin \: 3x \: tan \: 2x}}}[/tex]

Ditanyakan:

Nilai dari [tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{1 - cos \: x}{sin \: 3x \: tan \: 2x}}}[/tex]

Jawab:

[tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{1 - cos \: x}{sin \: 3x \: tan \: 2x} = \lim_{x \to 0}\dfrac{1 -(1 - 2 \: {sin}^{2}\tfrac{1}{2}x)}{sin \: 3x \: tan \: 2x}}} \\ \\ \displaystyle{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\sf{ = \lim_{x \to 0} \dfrac{\cancel{1} - \cancel{1} + {2 \: sin}^{2}\tfrac{1}{2}x}{sin \: 3x \: tan \: 2x}}}\\ \\\displaystyle{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\sf{ = \lim_{x \to 0}\dfrac{{2 \: sin}^{2}\tfrac{1}{2}x}{sin \: 3x \: tan \: 2x}}}\\ \\\displaystyle{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\sf{ = \lim_{x \to 0}2. \: \lim_{x \to 0}\dfrac{\: \: sin \: \tfrac{1}{2}x \: \: }{sin \: 3x}. \: \lim_{x \to 0}\dfrac{\: \: sin \: \tfrac{1}{2}x \: \: }{tan \: 2x}}} \\ \\ \sf{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:{ = 2. \: \dfrac{ \: \: \tfrac{1}{2} \: \: }{3}. \: \dfrac{ \: \: \tfrac{1}{2} \: \: }{2}}} \\ \\ \sf{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:= 2.\:\dfrac{1}{6}.\:\dfrac{1}{4}} \\ \\ \sf{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: = \dfrac{1}{12}}[/tex]

Jadi nilai dari [tex]\displaystyle{\sf{\lim_{x \to 0} \dfrac{1 - cos \: x}{sin \: 3x \: tan \: 2x}}}[/tex] adalah [tex]\boxed{\sf{\dfrac{1}{12}}}.[/tex]

PELAJARI LEBIH LANJUT

Kasus limit trigonometri lainnya dapat disimak juga di:

brainly.co.id/tugas/24724411brainly.co.id/tugas/23465822brainly.co.id/tugas/30234598ㅤDETAIL JAWABAN

Kelas : 11

Mapel : Matematika

Materi : Limit Fungsi

Kode Kategorisasi : 11.2.8

Kata Kunci : Limit Fungsi, Limit Trigonometri, Teorema Limit Utama, Teorema Limit Trigonometri, Limit Fungsi Trigonometri Menuju Nol


14. Soal limit Trigonometri mohon sertakan caranya makasih :)


Jawab:


Penjelasan dengan langkah-langkah:



15. soal limit trigonometri


Jawab:

Penjelasan dengan langkah-langkah:

limit trigonometri

ljm x→0 sin ax/bx = lim x→0 sin ax/bx = a/b

lim x→0 (1 - cos² x)/(x tan 2x)

= lim x→0 sin² x / x tan 2x

= lim x→0 (sin x/x) . (sin x/tan 2x)

= x/x . x/2x

= 1 . 1/2

= 1/2


16. **contoh soal trigonometri kelas 10 dan pembahasannya dong


IDENTITAS TRIGONOMETRI :
sederhanakan
1. Tan A x cos A
2. Tan A x Cosec A
jawab :
1.  [tex] \frac{sin A}{cos A} [/tex] X cos A
dapat disederhanakan dengan cara mencoret/eliminasi cos A. Maka hasilnya sin A
2.  [tex] \frac{sin A}{cos A} [/tex] x [tex] \frac{1}{sin A} [/tex] dapat disederhanakan dengan mencoret/eliminasi sin A, lalu mendapat hasil [tex] \frac{1}{cos A} [/tex] dan dapat disederhanakan lagi menjadi Sec A

17. contoh soal trigonometri dan pembahasannya


                  cos 25 + cos 115
 soalnya =  -----------------------
                   cos 25 - cos 115
                   
maaf kalau salah

18. tuliskan contoh soal cerita beserta jawaban/pembahasan nya materi trigonometri


Sebuah kapal berlayar dari pelabuhan A ke pelabuhan B dengan kecepatan 40 km/jam selama 2 jam dengan arah 030°, kemudian melanjutkan perjalanan dari pelabuhan B menuju pelabuhan C dengan kecepatan 60 km/jam selama 2,5 jam dengan arah 150°. Buatlah sketsa perjalanan kapal dan tentukan jarak antara pelabuhan A dan C!

Pembahasan:

Jarak = kecepatan / waktu
Jarak pelabuhan A ke B adalah 40 / 2 = 20 km
Jarak pelabuhan B ke C adalah 60 / 2,5 = 24 km

Perhatikan gambar terlampir.
Besar sudut ABC adalah 30° + 30° = 60°
Gunakan aturan cosinus untuk mencari AC

AC² = AB² + BC² - [2 x AB x BC x cos ∠ABC]
AC² = 20² + 24² - [2 x 20 x 24 x cos 60°]
AC² = 976 - [2 x 20 x 24 x ¹/₂]
AC² = 976 - 480
AC = √ 496
Diperoleh jarak antara pelabuhan A dan C sejauh 4√31 km

19. contoh soal limit fungsi trigonometri


Tentukan hasil dari soal limit berikut  

Tentukan hasil dari soal limit berikut
[tex] \lim_{x \to \inft0} \frac{sin 3x}{x} [/tex]=1
[tex] \lim_{x \to \inft0 \frac{1-cost}{sint} } [/tex]=0

20. Soal nilai limit trigonometri dan limit tak hingga.Tidak menerima jawaban asal-asalan. Harap sertakan cara.​


Penjelasan dengan langkah-langkah:

1.lim x=>0 Sin² 3x / 2x Tan 3x

= lim (Sin 3x/2x / Sin 3x/Tan 3x)

= 3/2 x 3/3

= 9/6

= 3/2

2.lim x=>~ √x² - 2x + 1 - √x² + 3x + 2

a = 1 , b = -2 , c = 1 , p = 1 , q = 3 , r = 2

Karena a = p = 1,maka :

(b-q)/(2√a)

= (-2-3)/(2√a)

= -5/2


21. minta contoh soal sama pembahasan tentang persamaan trigonometri dong????????


Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari cos x = 1/2 

Pembahasan
1/2 adalah nilai cosinus dari 60°. 

Sehingga 

cos x = cos 60° 

Cos x° = Cos a°

MAKA

x = a + k . 360
x = -a + k . 360

(i) x = 60° + k ⋅ 360°
k = 0 → x = 60 + 0 = 60 °
k = 1 → x = 60 + 360 = 420°

(ii) x = −60° + k⋅360
x = −60 + k⋅360
k = 0 → x = −60 + 0 = −60° 
k = 1 → x = −60 + 360° = 300° 

Himpunan penyelesaian yang diambil adalah:
HP = {60°, 300°}1. Jika Sin xo = Sin α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (180– α) + k. 360 k ∈ Bilangan Bulat
2. Jika Cos xo = Cos α o (x∈ R) Maka : x1 = α + k. 360 atau x2 = (– α) + k. 360 k ∈ Bilangan Bulat
3. Jika tan xo = tan α o (x ∈ R) Maka : x1.2 = α + k. 180 k ∈ Bilangan Bulat

Contoh ❶ 

Himpunan penyelesaian dari pesamaan:

2sin x⁰ - √3 = 0, 0⁰ ≤ x ≤ 2π⁰ adalah .....

A. {π/3 , 2π/3}

B. {π/3 , π/6}

C. {π/3 , π/2}

D. {π/3 , 5π/6}

E. {2π/3 , 5π/6}

Pembahasan:

2sin x⁰ - √3 = 0

2sin x⁰ = √3

  sin x⁰ = (1/2)√3

  sin x⁰ = sin π/3⁰

       x₁ = π/3 + k . 360 atau x₂ = (π - π/3) + k . 360

Untuk k = 0 maka:

       x₁ = π/3

       x₂ = 2π/3

Jadi, himpunan penyelesaiannya adalah {π/3 , 2π/3} -----> Jawaban: A


22. contoh soal limit trigonometriapa ya gaes?​


Jawaban:

maaf kalo kurang benar


23. soal limit trigonometri


semoga bermanfaat ya [tex]\lim_{x\to0}{\frac{x+\sin{2x}}{2x-\tan{6x}}}=\\[/tex]

Bentuk ini bisa diselesaikan dengan manipulasi aljabar, yaitu dengan menambahkan bentuk [tex]\frac{\frac{1}{x}}{\frac{1}{x}}[/tex], sehingga :

[tex]\lim_{x\to0}{\frac{x+\sin{2x}}{2x-\tan{6x}}}=\lim_{x\to0}{\frac{x+\sin{2x}}{2x-\tan{6x}}.\frac{\frac{1}{x}}{\frac{1}{x}}}\\\lim_{x\to0}{\frac{\frac{x+\sin{2x}}{x}}{\frac{2x-\tan{6x}}{x}}}=\frac{1+\lim_{x\to0}{\frac{\sin{2x}}{x}}}{2-\lim_{x\to0}{\frac{\tan{6x}}{x}}}=\frac{1+\lim_{x\to0}{\frac{\sin{2x}}{2x}.2}}{2-\lim_{x\to0}{\frac{\tan{6x}}{6x}.6}}=\frac{1+1.2}{2-1.6}=\frac{3}{-4}=-\frac{3}{4}\\[/tex]

Semoga membantu.

24. contoh soal dan pembahasan integral trigonometri


Kepada Admin terhormat.. Itu yang anda hapus itu file saya.. jadi jangan sembarangan hapus ya..  

http://2.bp.blogspot.com/-1gCHzq1wq9A/U-IRpxbojdI/AAAAAAAACaY/EBpPc5wi4qA/s1600/DSCN6473.JPG 

kalau saudara penghapus tidak percaya, silahkan buka http://pkkdpk.blogspot.com/2014/08/blog-post_28.html





saya lakukan ini karena file fotonya tidak bisa masuk ke brainly... jadi tolong ga usah main2 jadi admin deh

25. soal limit trigonometri


limit trigonometri

lim x→ (cos x - cos 5x) / (cos x tan² 2x)

= lim x→0 (-2 sin (x + 5x)/2 sin (x - 5x)/2) /(cos x tan² 2x)

= lim x→0 (2 sin 3x sin 2x) / cos x tan² 2x

= lim x→0 2(sin 3x/tan 2x) . (sin 2x/tan 2x) . (1/cos x)

= 2 . 3x/2x . 2x/2x . 1/cos 0

= 2 . 3/2 . 1 . 1

= 3


26. Contoh soal dan pembahasan limit kelas 10


Jika f(x) = x2 − 6x + 8, tentukan interval f(x) naik dan interval f(x) turun!

Jawab :
f '(x) = 2x − 6

f(x) naik ⇒ f '(x) > 0
⇔ 2x − 6 > 0
⇔ 2x > 6
⇔ x > 3

f(x) turun ⇒ f '(x) < 0
⇔ 2x − 6 < 0
⇔ 2x < 6
⇔ x < 3

Jadi f(x) naik pada interval x > 3 dan turun pada interval x < 3.

27. minta rumus dasar trigonometri dong.. sekalian contoh soal dan pembahasan


pada segitiga siku2
oada sudut selain 90°
sin = sisi depan / sisi miring
cos = sisi samping / sisi miring
tan = sisi depan / sisi samping

cosec = 1/sin
sec = 1/cos
cotan = 1/tan

28. soal limit trigonometri


semoga membantu^_^ semangat trus belajarnya^_^ enjoyyy


29. contoh soal trigonometri dan pembahasannya


Diketahui p dan q adalah sudut lancip dan p – q = 30°. Jika cos p sin q = 1/6 , maka nilai dari sin p cos q = …
a. 1/6. b. 2/6 c. 3/6 d. 4/6 e. 5/6 Jawaban :
p – q = 30°
sin (p – q)= sin 30°
sin p cos q – cos p sin q = ½
sin p cos q – 1/6 = ½
sin p cos q = ½ + 1/6 = 4/6
jadi nilai sin p cos q = 4/6
ini contoh soal dan pembahasannya .

30. Tolong buatin soal limit trigonometri serta pembahasannya juga, please bantu aku


Itu contoh soal limit trigonometri

31. Buatlah 5 contoh soal integral beserta pembahasannya ! (bukan integral fungsi trigonometri)


1. ∫(x^2 + 4x + 5) dx

Jawaban:

jadiin 3 bagian: ∫x^2 dx, ∫4x dx, dan ∫5 dx

jadi,

∫(x^2 + 4x + 5) dx = ∫x^2 dx + ∫4x dx + ∫5 dx

= (x^3 / 3) + (4x^2 / 2) + (5x) + C

= (x^3 / 3) + 2x^2 + 5x + C, dengan C merupakan konstanta integrasi.

2. ∫(5x^4 - 3x^3 + 2x - 7) dx

Jawaban:

sama juga jadiin 3 : ∫5x^4 dx, ∫-3x^3 dx, ∫2x dx, dan ∫-7 dx

∫(5x^4 - 3x^3 + 2x - 7) dx = ∫5x^4 dx - ∫3x^3 dx + ∫2x dx - ∫7 dx

= (5x^5 / 5) - (3x^4 / 4) + (2x^2 / 2) - (7x) + C

= x^5 - (3/4)x^4 + x^2 - 7x + C, dengan C merupakan konstanta integrasi.

3. ∫(2x^2 + 5x - 3) dx

Jawaban:

sama juga jadiin 3 : ∫2x^2 dx, ∫5x dx, dan ∫-3 dx

∫(2x^2 + 5x - 3) dx = ∫2x^2 dx + ∫5x dx - ∫3 dx

= (2x^3 / 3) + (5x^2 / 2) - (3x) + C

= (2/3)x^3 + (5/2)x^2 - 3x + C, dengan C merupakan konstanta integrasi.

4. ∫(x^3 + 2x^2 + x + 1) dx

Jawaban:

jadiin 4 bagian yang terpisah : ∫x^3 dx, ∫2x^2 dx, ∫x dx, dan ∫1 dx

∫(x^3 + 2x^2 + x + 1) dx = ∫x^3 dx + ∫2x^2 dx + ∫x dx + ∫1 dx

= (x^4 / 4) + (2x^3 / 3) + (x^2 / 2) + x + C

= (1/4)x^4 + (2/3)x^3 + (1/2)x^2 + x + C, dengan C jadi konstanta integrasi.

5. ∫(3x^2 + 4x + 2) / x dx

Jawaban:

jadiin dua bagian terpisah, yaitu ∫3x dx dan ∫(4/x) dx

∫(3x^2 + 4x + 2) / x dx = ∫3x dx + ∫(4/x) dx

= (3/2)x^2 + 4ln|x| + C, dengan C merupakan konstanta integrasi.


32. buatkan 2 soal limit turunan beserta pembahasannya


Soal No. 1
Tentukan turunan pertama dari fungsi berikut:
a) f(x) = 3x + 2x − 5x
b) f(x) = 2x + 7x
Pembahasan
Rumus turunan fungsi aljabar bentuk ax^n
[tex]f( \times ) = {ax}^{n} \: menghasilkan \: f {(x)}^{1} = an {x}^{n - 1} \\ y = x a {x}^{n} \: menghasilkan \: {y}^{1} = an {x}^{n - 1} [/tex]
Sehingga:
a) f(x) = 3x + 2x − 5x
f ‘(x) = 4⋅3x + 2⋅2x − 5x^1-1
f ‘(x) = 12x + 4x − 5x^0
f ‘(x) = 12x + 4x − 5
b) f(x) = 2x + 7x
f ‘(x) = 6x^2 + 7

Soal No. 2
Tentukan turunan pertama dari fungsi berikut:
a) f(x) = 10x
b) f(x) = 8
c) f(x) = 12
Pembahasan
a) f(x) = 10x
f(x) = 10x^1
f ‘(x) = 10x^1-1
f ‘(x) = 10x^0
f ‘(x) = 10
[tex] {x}^{0} = 1[/tex]
b) f(x) = 8
f(x) = 8x^0
f ‘(x) = 0⋅ 8x^0-1
f ‘(x) = 0
[tex]a {x}^{0} = a[/tex]
c) f(x) = 12
f ‘(x) = 0


Itu, mohon agar divote

33. 2 contoh soal tentang persamaanTrigonometri sekalian denganPembahasannya​


Jawaban:

1.untuk 0°≤×≥ 360° tentukan himpunan penyelesaian dari cos × = ½

jawab: { 60°,300°}

Penjelasan dengan langkah-langkah:

cos x= ½

(a) x = 60° + k.360°

k = 0. ×=60+0=60° (m)

k = 1. ×=60+360=420° (Tm)

atau

(b) x = -60° + k. 360

x= -60 + k.360

k = 0. x = -60 + 0= -60° (Tm)

k= 1. x = -60+360° = 300° (m)

hp= { 60°,300° } (B)

semoga membantu


34. buatlah 4 contoh soal limit trigonometri


Mapel : Math

Jawab tuh.......
#Trigonometri

35. soal limit trigonometri


Penjelasan dengan langkah-langkah:

[tex]\lim_{x \to 0}( \frac{ \sin(2x) \cos(3x)}{5x} ) \\ [/tex]

Menggunakan aturan L'Hopital

[tex] = \frac{2 \cos(2 \times 0) \cos(3 \times 0) - 3 \sin(2 \times 0) \sin(3 \times 0)}{5} [/tex]

[tex] = \frac{2 \cos(0) \cos(0) - 3 \sin(0) \sin(0)}{5} [/tex]

[tex] = \frac{2 \times 1 \times 1 - 3 \times 0 \times 0}{?} [/tex]

[tex] = \frac{2 - 0}{5} [/tex]

[tex]{ \boxed{ \boxed{ \rm = \frac{2}{5} }}}[/tex]

#BudayakanBerterimaKasih :)


36. Contoh soal penggunaan limit fungsi (pemetaan gradien garis singgung kurva) beserta dengan pembahasannya! Minimal 2 soal.. Terimakasih.. :) ^_^


1. Tentukan gradien garis singgung pada kurva
f(x) = x² di titik dengan absis 2
Penyelesaian :
m = lim f ( 2 + Δx - f (2) = lim (2 + Δx)² - 2²
                     Δx                          Δx
    = lim 4Δx + Δx² = lim 4 - Δx = 4
                  Δx
Jadi, gradien garis singgung kurva f(x) = x² di titik dengan absis x = 2 adalah m = 4.
2. Tentukan gradien garis singgung pada kurva
f(x) = x3 di titik dengan absis 3
Penyelesaian :
m = lim  f ( 3 + Δx - f (3) = lim (3 + Δx)³ - 3²
                     Δx                          Δx
    = lim 3³ + 3.3² Δx + Δx³ - 3³
    = lim 27Δx + 9(Δx)² + (3x)³  = lim (27 - 9 + (Δx)²) = Δx
                        Δx                                        Δx
    = lim 27 + 9Δx + Δx² = 27

Itu yg ngajarin kk ku, kak.. semoga bermanfaat

37. Jelaskan bagaimana cara penyelesaian limit fungsi trigonometri dengan cara penyederhanaan, beserta contoh soalnya


Rumus dan penjelasan nya ada di gambar ya...

38. soal limit trigonometri


[tex]\lim_{x \to 0}\: \left( \frac{2x - x\sqrt{2 + \sqrt{2 + \sqrt{2 + 2 \: cos \: 4x}}}}{tan \: x \: - \: sin \: x} \right)[/tex]

[tex]= \lim_{x \to 0}\: \left( \frac{2x - x\sqrt{2 + \sqrt{2 + \sqrt{2 + 2(2 \: {cos}^{2} \:2x - 1)}}}}{ \frac{sin \: x}{cos \: x} \: - \: sin \: x} \right)[/tex]

[tex]= \lim_{x \to 0}\: \left( \frac{2x - x\sqrt{2 + \sqrt{2 + \sqrt{2 + 4 \: {cos}^{2} \:2x - 2}}}}{ \frac{sin \: x - sin \: x \: cosx}{cos \: x} } \right)[/tex]

[tex]= \lim_{x \to 0}\: \left( \frac{cos \: x \left(2x - x\sqrt{2 + \sqrt{2 + 2 \: cos \: 2x}} \right)}{ sin \: x(1 - cos \: x)} \right)[/tex]

[tex]= \lim_{x \to 0}\: \left( \frac{ cos \: x\left(2x - x\sqrt{2 + \sqrt{2 + 2(2\: {cos}^{2} \: x - 1)}} \right)}{sin \: x(1 - cos \: x)} \right)[/tex]

[tex]= \lim_{x \to 0}\: \left( \frac{cos \: x \left(2x - x\sqrt{2 + \sqrt{2 + 4\: {cos}^{2} \: x - 2}} \right)}{sin \: x(1 - cos \: x)} \right)[/tex]

[tex]= \lim_{x \to 0}\: \left( \frac{cos \: x \left(2x - x\sqrt{2 + 2 \: cos \: x} \right)}{sin \: x(1 - cos \: x)} \right)[/tex]

[tex]= \lim_{x \to 0}\: \left( \frac{cos \: x \left(2x - x\sqrt{2 + 2(2\: {cos}^{2} \: \frac{1}{2} x - 1)} \right)}{sin \: x(1 - cos \: x)} \right)[/tex]

[tex]= \lim_{x \to 0}\: \left( \frac{cos \: x \left(2x - x\sqrt{2 + 4\: {cos}^{2} \: \frac{1}{2} x - 2} \right)}{sin \: x(1 - cos \: x)} \right)[/tex]

[tex]= \lim_{x \to 0}\: \left( \frac{cos \: x(2x - x(2 \: cos \: \frac{1}{2} x))}{sin \: x(1 - cos \: x)} \right)[/tex]

[tex]= \lim_{x \to 0}\: \left( \frac{cos \: x(2x(1 - cos \: \frac{1}{2} x))}{sin \: x(1 - cos \: x)} \right)[/tex]

[tex]= \lim_{x \to 0}\: \left( \frac{cos \: x(2x(2 \: {sin}^{2} \: x))}{sin \: x(2 \: {sin}^{2} \: \frac{1}{2}x)} \right)[/tex]

[tex]= \lim_{x \to 0}\: \left( \frac{x(2 \: cos \: x\: sin \: x)}{{sin}^{2} \: \frac{1}{2}x} \right)[/tex]

[tex]= \lim_{x \to 0}\: \left( \frac{(2)( \frac{1}{2}x)(sin \: 2x)}{{sin}^{2} \: \frac{1}{2}x} \right)[/tex]

[tex]= \lim_{x \to 0}\: \left( \frac{ \frac{1}{2}x}{sin \: \frac{1}{2}x} \right).\left( \frac{(2)(sin \: 2x)}{sin\: \frac{1}{2}x} \right)[/tex]

[tex]= \lim_{x \to 0}\: (2).\left( \frac{ \frac{1}{2}x}{sin \: \frac{1}{2}x} \right).\left( \frac{sin \: 2x}{sin\: \frac{1}{2}x} \right)[/tex]

[tex]= (2).(1).\left( \frac{2}{\frac{1}{2}} \right)[/tex]

[tex] \boxed{ \boxed{ = 8}}[/tex]


39. Buatlah 2 contoh soal penerapan trigonometri beserta pembahasannya



Pada segitiga ABC diketahui panjang sisi AB = 2 cm, AC = 3 cm dan BC = 2 cm. Nilai Sin A = ...



pembahasan

AB = c = 2 dan AC = b = 3 serta BC = a = 2, maka dengan menggunakan aturan cosinus:

a2 = b2 + c2 – 2 . b . c Cos A

22 = 32 + 22 – 2 . 3 . 2 Cos A

4 = 9 + 4 - 12 Cos A
12 Cos A = 9
Cos A = 9 / 12 = 3 / 4
Sehingga sin A = (√(42 - 32) / 4 = √7/4



Himpunan penyelesaian dari persamaan cos 2x + 3 sin x + 1 = 0, untuk 0 < x < 2π adalah...

pembahasan
cos 2x + 3 sin x + 1 = 0
(1 - 2 sin x2) + 3 sin x + 1 = 0
- 2 sin x2 + 3 sin x +2 = 0
2 sin x2 - 3 sin x - 2 = 0
(2 sin x + 1) (sin x - 2) = 0
Maka:
2 sin x + 1 = 0 maka sin x = - 1/2
Diperoleh x = 7/6 π dan x = 11/12 π
Dan
sin x - 2 = 0 maka sin x = 2 (tidak mungkin dicari x)
HP = (7/6 π , 11/12 π)

40. contoh soal trigonometri kelas 10 dan pembahasannya dong


Nyatakan dalam sudut lancip
1. sin 100⁰
   pnylsaian : sin 100⁰=sin ( 180-100)⁰
                                     =sin 80⁰
2. sin 146
   pnylsaian : sin 146⁰ = sin ( 180-146)⁰
                                      = sin 34⁰
3. cos 95⁰
   pnylesaian : cos 95⁰ = cos  (180-95)⁰
                                      = -cos 85⁰
4. tan 136⁰
  pnyelesaian : tan 136⁰=tan (180-136)⁰
                                        = -tan 44
5.  sin 193
  pnyelesaian sin 193⁰ =sin(180+193)⁰
                                       = -sin 13⁰
6. cos 200⁰
  pnyelesaian cos 200⁰=cos(180+200)⁰
                                       =- cos 20⁰
7. sin (-13)⁰
 pnyelesaian sin (-13) ⁰= -sin 13⁰
8. cos (-35)⁰
  pnyelesaian cos (-35)⁰= cos 35⁰ -> khusus cos tettap +
9. tan (-68)
  pnyelesaian : tan (-68)=tan 68
10. cos 330⁰
    penyelesaian: cos 330⁰=cos(360-330)
                                            =cos 60
                                            =1/2√3Tentukan perbandingan trigonometri sudut lancipnya

1.  sin 300°
2.  cos 315°
3.  tan 225°

pembahasan

1.  sin 300° = sin (360 - 60)°
                   = -sin 60°
                   = -1/2 √3

2.  cos 315° = cos (270 + 45)°
                    = sin 45°
                    = 1/2 √2

3.  tan 225° = tan (180 + 45)°
                    = tan 45°
                    = 1

Video Terkait

Kategori matematika